A Visual and Sensitive Detection of Escherichia coli Based on Aptamer and Peroxidase-like Mimics of Copper-Metal Organic Framework Nanoparticles
Aptamer
Streptavidin
DOI:
10.1007/s12161-020-01765-9
Publication Date:
2020-05-09T13:02:17Z
AUTHORS (5)
ABSTRACT
In order to monitor and respond rapidly to outbreaks of food-borne pathogens, establishing rapid and sensitive detection methods is becoming increasingly urgent. In this work, through the synthesis of copper-based metal-organic framework nanoparticles (Cu-MOF NPs) and functionalized with aptamers, we developed a colorimetric protocol to detect Escherichia coli. In a typical experimental procedure, aptamer 1 was immobilized onto microplate to act as capture probes. Cu-MOF NPs were synthesized and functionalized with streptavidin and biotinylated aptamer 2 to form the signal probes. In the presence of E. coli, aptamers on both capture and signal probes bind with E. coli and form a sandwich-type complex. The Cu-MOF NPs enable to catalyze the colorless peroxidase substrate to yield a colorimetric output signal. This peroxidase-like mimics-based colorimetric aptasensor showed a rapid and sensitive quantification of E. coli in the concentration range of 16~1.6 × 106 cfu/mL with a limit of quantitation (LOQ) of 16 cfu/mL and limit of detection (LOD) of 2 cfu/mL. The application of the developed assay for colorimetric measuring of milk samples was evaluated with satisfactory results. The developed Cu-MOF NPs-assisted visual method can be expected as a powerful alternative and promising tool for foodborne pathogen detection and control.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (40)
CITATIONS (50)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....