Tailoring RGD local surface density at the nanoscale toward adult stem cell chondrogenic commitment
Chondrogenesis
DOI:
10.1007/s12274-016-1382-5
Publication Date:
2016-12-29T05:12:40Z
AUTHORS (9)
ABSTRACT
Arginine-glycine-aspartic acid (RGD) dendrimer-based nanopatterns on poly(L-lactic acid) were used as bioactive substrates to evaluate the impact of the RGD local surface density on the chondrogenic induction of adult human mesenchymal stem cells. During chondrogenic commitment, active extracellular matrix (ECM) remodeling takes place, playing an instructive role in the differentiation process. Although three-dimensional environments such as pellet or micromass cultures are commonly used for in vitro chondrogenic differentiation, these cultures are rather limited with respect to their ability to interrogate cells in cell–ECM interactions. In the present study, the nanopatterns of the tunable RGD surface density were obtained as a function of the initial dendrimer concentration. The local RGD surface density was quantified through probability contour plots for the minimum interparticle distance, constructed from the corresponding atomic force microscopy images, and correlated with the cell adhesion and differentiation response. The results revealed that the local RGD surface density at the nanoscale acts as a regulator of chondrogenic commitment, and that intermediate adhesiveness of cells to the substrates favors mesenchymal cell condensation and early chondrogenic differentiation. Open image in new window
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (51)
CITATIONS (17)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....