Harnessing Vis–NIR broad spectrum for photocatalytic CO2 reduction over carbon quantum dots-decorated ultrathin Bi2WO6 nanosheets
Visible spectrum
Carbon fibers
Ultraviolet
DOI:
10.1007/s12274-017-1435-4
Publication Date:
2017-01-26T03:11:36Z
AUTHORS (5)
ABSTRACT
The photocatalytic reduction of CO2 to energy-rich hydrocarbon fuels is a promising and sustainable method of addressing global warming and the imminent energy crisis concomitantly. However, a vast majority of the existing photocatalysts are only capable of harnessing ultraviolet (UV) or/and visible light (Vis), whereas the near-infrared (NIR) region still remains unexplored. In this study, carbon quantum dots (CQDs)-decorated ultrathin Bi2WO6 nanosheets (UBW) were demonstrated to be an efficient photocatalyst for CO2 photoreduction over the Vis–NIR broad spectrum. It is noteworthy that the synthesis procedure of the CQDs/UBW hybrid nanocomposites was highly facile, involving a one-pot hexadecyltrimethylammonium bromide (CTAB)-assisted hydrothermal process. Under visible light irradiation, the optimized 1CQDs/UBW (1 wt.% CQD content) exhibited a remarkable 9.5-fold and 3.1-fold enhancement of CH4 production over pristine Bi2WO6 nanoplatelets (PBW) and bare UBW, respectively. More importantly, the photocatalytic responsiveness of CQDs/UBW was successfully extended to the NIR region, which was achieved without involving any rare earth or noble metals. The realization of NIR-driven CO2 reduction could be attributed to the synergistic effects of (i) the ultrathin nanostructures and highly exposed {001} active facets of UBW, (ii) the excellent spectral coupling of UBW and CQDs, where UBW could be excited by the up-converted photoluminescence of CQDs, and (iii) the electron-withdrawing nature of the CQDs to trap the photogenerated electrons and retard the recombination of charge carriers.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (34)
CITATIONS (155)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....