Mesoporous silica stabilized MOF nanoreactor for highly selective semi-hydrogenation of phenylacetylene via synergistic effect of Pd and Ru single site
Nanoreactor
Phenylacetylene
Nanomaterial-based catalyst
Polystyrene
DOI:
10.1007/s12274-021-3849-2
Publication Date:
2021-09-30T16:10:51Z
AUTHORS (11)
ABSTRACT
Selective semi-hydrogenation of phenylacetylene to styrene is a crucial step in the polystyrene industry. Although Pd-based catalysts are widely used in this reaction due to their excellent hydrogenation activity, the selectivity for styrene remains a great challenge. Herein, we designed a mesoporous silica stabilized Pd-Ru@ZIF-8 (MS Pd-Ru@ZIF-8) nanoreactor with novel Pd and Ru single site synergistic catalytical system for semi-hydrogenation of phenylacetylene. The nanoreactor exhibited a superior performance, achieving 98% conversion of phenylacetylene and 96% selectivity to styrene. Turnover frequency (TOF) of nanoreactor was up to as high as 2,188 h−1, which was 25 times and 5 times more than the single metal species catalysts, mesoporous silica stabilized Pd@ZIF-8 nanoreactor (MS Pd@ZIF-8), and mesoporous silica stabilized Ru@ZIF-8 nanoreactor (MS Ru@ZIF-8). This catalytic activity was attributed to the synergistic effect of Pd and Ru single site anchored strongly into the framework of ZIF-8, which reduced the desorption energy of styrene and increased the hydrogenation energy barrier of styrene. Importantly, since the ordered mesoporous silica was introduced into the nanoreactor shell to stabilize ZIF-8, MS Pd-Ru@ZIF-8 showed excellent reusability and stability. After the five cycles, the catalytical activity and selectivity still remained. This work provides insights for a synergistic catalytic system based on single-site active sites for selective hydrogenation reactions.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (58)
CITATIONS (42)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....