Isoflurane Preconditioning May Attenuate Cardiomyocyte Injury Induced by Hypoxia/Reoxygenation Possibly by Regulating miR-363-3p
MicroRNAs
03 medical and health sciences
0302 clinical medicine
Isoflurane
Humans
Myocytes, Cardiac
Apoptosis
Hypoxia
Cell Hypoxia
DOI:
10.1007/s12640-022-00584-6
Publication Date:
2022-10-12T05:07:40Z
AUTHORS (8)
ABSTRACT
This study attempted to explore whether miR-363-3p play a role in the isoflurane (ISO)-mediated protective effect of cardiomyocyte injury induced by hypoxia/reoxygenation (H/R). A myocardial cell injury model was established, and the different preconditioning ISO concentrations were screened and determined. The miR-363-3p level was detected by RT-qPCR. The effects of miR-363-3p on proliferation and apoptosis of H9c2 cells were detected by CCK-8 assay and flow cytometry. Myocardial injury indexes were determined by enzyme-linked immunosorbent assay (ELISA). The interaction of miR-363-3p with the 3'-UTR of the KLF2 gene was confirmed by luciferase reporter gene assay. ISO pretreatment can reduce the up-regulation of miR-363-3p after H/R injury. ISO pretreatment reduces the inhibition of cell viability and the promotion of cell apoptosis induced by H/R stimuli, while the overexpression of miR-363-3p counteracts the protective effect of ISO pretreatment. Meanwhile, ISO pretreatment also reduced the level of markers of H/R-induced myocardial injury. Moreover, luciferase reporter analysis showed that KLF2 was the downstream target gene of miR-363-3p. ISO pretreatment may alleviate H/R-induced cardiomyocyte injury by regulating miR-363-3p.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (24)
CITATIONS (4)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....