Bimetallic Pd/SnO2 Nanoparticles on Metal Organic Framework (MOF)-Derived Carbon as Electrocatalysts for Ethanol Oxidation

02 engineering and technology 0210 nano-technology 7. Clean energy
DOI: 10.1007/s12678-019-00518-5 Publication Date: 2019-03-07T07:53:18Z
ABSTRACT
Bimetallic Pd/SnO2 nanoparticle electrocatalysts on metal organic framework-derived carbon (MOFDC) were successfully synthesized using microwave-assisted strategies and explored for ethanol oxidation reaction (EOR) in alkaline solution. The materials were thoroughly characterized using XRD, XPS, TEM, and Raman. TEM showed that Pd/SnO2/MOFDC gave the least average particle size of 5.5 nm compared to its counterparts on carbon black (CB). The Pd/SnO2/MOFDC gave the best electrocatalytic performance in terms of high electrochemical active surface area (ECSA) of 962 cm2 mg−1, low onset potential and overpotential for EOR, and high current density (j) of four times more than those of the Pd/CB electrocatalyst. In addition, Pd/SnO2/MOFDC showed superior kinetic parameter (in terms of the Tafel slope (b) = 216.1 ± 8 mV dec−1) and least combined resistance (R = Rs + Rct). These results show that the Pd/SnO2/MOFDPC nanoparticle electrocatalyst is promising for EOR with improved electrocatalytic properties for application in direct ethanol fuel cell (DEFC).
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (63)
CITATIONS (50)