3D compositional characterization of Si/SiO2 vertical interface structure by atom probe tomography

Atom probe Characterization
DOI: 10.1007/s13391-013-6002-x Publication Date: 2013-11-16T00:54:58Z
ABSTRACT
Precise interpretation of three-dimensional atom probe tomography (3D-APT) data is necessary to reconstruct semiconductor-device structures. In particular, it is difficult to reconstruct the hetero-structure of conductors and insulators using APT analysis, due to the preferential evaporation of low-evaporation field-material. In this paper, shallow-trench isolation (STI) structure, consisting of a Si column and a SiO2 region, is analyzed using APT. The dimensional artifact known as the local-magnification-effect occurring as a result of the geometric deviation from the ideal hemisphere was successfully calibrated by ‘high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) tomography’ and Electron Energy Loss Spectroscopy (EELS). In the direction of the width, the Si layer was compressed by 50%, and the interface was expanded by 250% with respect to the reference data obtained for the same sample. A 5-nm-thick transition layer was observed at the interface between Si and SiO2. The composition of the transition layer follows the well-developed sequence Si-Si2O-SiO-SiO2 from the Si area to the SiO2 area. Atoms at the interface were likely to evaporate with a bit wider angle than atoms in the Si area due to the preferentially evaporated Si layer, which caused the interface area to appear locally magnified.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (13)
CITATIONS (7)