Assessment of optimal flying height and timing using high-resolution unmanned aerial vehicle images in precision agriculture
Drone
Precision Agriculture
DOI:
10.1007/s13762-021-03195-4
Publication Date:
2021-02-21T11:02:32Z
AUTHORS (8)
ABSTRACT
This paper shows some practical experiences of using unmanned aerial vehicles-based platform for remote sensing in supporting precision agriculture mapping. There have been studies on unmanned aerial vehicles used to calculate plant water stress; however, the scientific reports of drone images that are used to predict best time and height are rare. The trial was conducted during 2020, in a five-year-old Anji tea plant experimental field, where drone captures images in a different time series of 27 flights during experimental days. This work aims to (1) investigate the appropriate thermography timing and altitude based on unmanned aerial vehicles remote sensing, (2) conduct a quantitative and qualitative study of various thermal orthomosaics and photographs, (3) establish workflow for high-resolution remote sensing application. All flights were operated at 3 m/s flying speed. Flights were performed during the testing day at about 09:00 h, 11:00 h, and 13:00 h. The drone images were taken at relative flying heights of 25 m, 40 m, and 60 m each day. The relationship between canopy temperature and plant-based variables was also established. The results reported that flights at 11:00 h and 60-m altitude orthomosaic could provide the best relation and accurate canopy temperature. On the other hand, the high relationship between stomatal conductance and canopy temperature was R2 0.98 at 11:00 h. The selection of optimal timing and altitude can provide rapid and reliable canopy temperature information. Overall, high resolution with low-altitude unmanned aerial vehicles images proved good relationship in order to assess the canopy temperature.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (76)
CITATIONS (19)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....