Robust scalable reversible strong adhesion by gecko-inspired composite design
02 engineering and technology
0210 nano-technology
DOI:
10.1007/s40544-021-0522-4
Publication Date:
2021-08-12T15:02:47Z
AUTHORS (9)
ABSTRACT
AbstractBio-inspired reversible adhesion has significant potential in many fields requiring flexible grasping and manipulation, such as precision manufacturing, flexible electronics, and intelligent robotics. Despite extensive efforts for adhesive synthesis with a high adhesion strength at the interface, an effective strategy to actively tune the adhesion capacity between a strong attachment and an easy detachment spanning a wide range of scales has been lagged. Herein, we report a novel soft-hard-soft sandwiched composite design to achieve a stable, repeatable, and reversible strong adhesion with an easily scalable performance for a large area ranging from ∼1.5 to 150 cm2 and a high load ranging from ∼20 to 700 N. Theoretical studies indicate that this design can enhance the uniform loading for attachment by restraining the lateral shrinkage in the natural state, while facilitate a flexible peeling for detachment by causing stress concentration in the bending state, yielding an adhesion switching ratio of ∼54 and a switching time of less than ∼0.2 s. This design is further integrated into versatile grippers, climbing robots, and human climbing grippers, demonstrating its robust scalability for a reversible strong adhesion. This biomimetic design bridges microscopic interfacial interactions with macroscopic controllable applications, providing a universal and feasible paradigm for adhesion design and control.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (66)
CITATIONS (36)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....