Mutual Self-Regulation of d-Electrons of Single Atoms and Adjacent Nanoparticles for Bifunctional Oxygen Electrocatalysis and Rechargeable Zinc-Air Batteries
Overpotential
Oxygen evolution
DOI:
10.1007/s40820-023-01022-8
Publication Date:
2023-02-11T12:11:39Z
AUTHORS (9)
ABSTRACT
Rechargeable zinc-air batteries (ZABs) are a promising energy conversion device, which rely critically on electrocatalysts to accelerate their rate-determining reactions such as oxygen reduction (ORR) and evolution (OER). Herein, we fabricate range of bifunctional M-N-C (metal-nitrogen-carbon) catalysts containing M-Nx coordination sites M/MxC nanoparticles (M = Co, Fe, Cu) using new class γ-cyclodextrin (CD) based metal-organic framework the precursor. With two types active interacting with each other in catalysts, obtained Fe@C-FeNC Co@C-CoNC display superior alkaline ORR activity terms low half-wave (E1/2) potential (~ 0.917 0.906 V, respectively), higher than Cu@C-CuNC 0.829 V) commercial Pt/C 0.861 V). As electrocatalyst, exhibits best performance, showing ORR/OER overpotential (ΔE) ~ 0.732 is much lower that 0.831 1.411 V), well most robust reported date. Synchrotron X-ray absorption spectroscopy density functional theory simulations reveal strong electronic correlation between metallic Co atomic Co-N4 catalyst can increase d-electron near Fermi level thus effectively optimize adsorption/desorption intermediates ORR/OER, resulting an enhanced electrocatalytic performance. The Co@C-CoNC-based rechargeable ZAB exhibited maximum power 162.80 mW cm-2 at 270.30 mA cm-2, combination + RuO2 158.90 265.80 cm-2) catalysts. During galvanostatic discharge 10 delivered almost stable voltage 1.2 V for 140 h, signifying virtue excellent activity.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (59)
CITATIONS (107)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....