Risk management for nuclear medical department using reinforcement learning algorithms
Risk management
Reinforcement learning
Machine learning
e-Health
0202 electrical engineering, electronic engineering, information engineering
02 engineering and technology
3. Good health
DOI:
10.1007/s40860-019-00084-z
Publication Date:
2019-05-14T23:31:29Z
AUTHORS (2)
ABSTRACT
Modern medical software systems are often classified as medical devices and governed by regulations which require stringent risk safety activities to be implemented to minimize the occurrence of risky events. This paper proposes a reinforcement learning (RL) based approaches for training a software agent for risk management of medical software systems. The goal of RL agent is to avoid that a patient enters in dangerous and undesirable states. At the same time agent must be able to reach on a safe state or an exit in a minimum interval of time. RL based system is also able to guide a patient to a safe path if he/she mistakenly enter into risk or undesirable states.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (12)
CITATIONS (12)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....