Proposal of a methodology for prediction of heavy metals concentration based on PM2.5 concentration and meteorological variables using machine learning
Artificial neural networks
PM2.5
Meteorological factors
Environmental technology. Sanitary engineering
01 natural sciences
Environmental sciences
Ensemble model
Heavy metals
Prediction model
GE1-350
TD1-1066
0105 earth and related environmental sciences
DOI:
10.1007/s44273-024-00029-w
Publication Date:
2024-02-27T15:02:40Z
AUTHORS (5)
ABSTRACT
AbstractIn this study, we developed a prediction model for heavy metal concentrations using PM2.5 concentrations and meteorological variables. Data was collected from five sites, encompassing meteorological factors, PM2.5, and 18 metals over 2 years. The study employed four analytical methods: multiple linear regression (MLR), random forest regression (RFR), gradient boosting, and artificial neural networks (ANN). RFR was the best predictor for most metals, and gradient boosting and ANN were optimal for certain metals like Al, Cu, As, Mo, Zn, and Cd. Upon evaluating the final model’s predicted values against the actual measurements, differences in the concentration distribution between measurement locations were observed for Mn, Fe, Cu, Ba, and Pb, indicating varying prediction performances among sites. Additionally, Al, As, Cd, and Ba showed significant differences in prediction performance across seasons. The developed model is expected to overcome the technical limitations involved in measuring and analyzing heavy metal concentrations. It could further be utilized to obtain fundamental data for studying the health effects of exposure to hazardous substances such as heavy metals.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (54)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....