Silk protein aggregation kinetics revealed by Rheo-IR
Kinetics
Spectrophotometry, Infrared
Viscosity
Elastic Modulus
Silk
Animals
02 engineering and technology
Bombyx
Protein Structure, Quaternary
Rheology
0210 nano-technology
DOI:
10.1016/j.actbio.2013.10.032
Publication Date:
2013-11-04T22:31:45Z
AUTHORS (4)
ABSTRACT
The remarkable mechanical properties of silk fibres stem from a multi-scale hierarchical structure created when an aqueous protein "melt" is converted to an insoluble solid via flow. To directly relate a silk protein's structure and function in response to flow, we present the first application of a Rheo-IR platform, which couples cone and plate rheology with attenuated total reflectance infrared spectroscopy. This technique provides a new window into silk processing by linking shear thinning to an increase in molecular alignment, with shear thickening affecting changes in the silk protein's secondary structure. Additionally, compared to other static characterization methods for silk, Rheo-IR proved particularly useful at revealing the intrinsic difference between natural (native) and reconstituted silk feedstocks. Hence Rheo-IR offers important novel insights into natural silk processing. This has intrinsic academic merit, but it might also be useful when designing reconstituted silk analogues alongside other polymeric systems, whether natural or synthetic.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (101)
CITATIONS (59)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....