Characterization of antimicrobial activity and mechanisms of low amphipathic peptides with different α-helical propensity
Serum
0301 basic medicine
Cell Membrane Permeability
Circular Dichroism
Molecular Sequence Data
Microbial Sensitivity Tests
Sodium Chloride
Hemolysis
Protein Structure, Secondary
Membrane Potentials
03 medical and health sciences
Anti-Infective Agents
Escherichia coli
Humans
Amino Acid Sequence
Peptides
DOI:
10.1016/j.actbio.2015.02.023
Publication Date:
2015-02-28T15:48:05Z
AUTHORS (7)
ABSTRACT
Antimicrobial peptides (AMPs) serve as a defense mechanism within multicellular organisms and are attracting increasing attention because of their potential application in the treatment of multidrug-resistant infections. Amphipathicity has long been believed to be the most important consideration for the structural modification and design of both naturally occurring and synthetic AMPs. Previous studies indicated that disruptive amphipathicity formed by replacing the paired charged amino acid residues on the polar face of an amphipathic helix with tryptophan residues linked with hydrogen bonds on the basis of α-helical protein folding principles endowed the AMPs with increased cell selectivity. In an attempt to augment and hone this strategy further, we designed a series of imperfect amphipathic peptides by placing different types of amino acid residues at the hydrogen bond linked positions of α-helix structures to characterize their antimicrobial properties and mechanism of action. The d-Trp-substituted sequence (PRW4-d) showed greater antimicrobial potency than Cys-(C4), Asp-(D4), Ile-(I4), and Pro-(P4) substituted sequences, comparable to the l-Trp-substituted parent sequence (PRW4). Furthermore, the total replacement of Lys residues with Arg residues along the peptide sequence (PRW4-R) exhibited enhanced antimicrobial activity and cell selectivity. In addition, no cytotoxicity was observed among these synthetic peptides. PRW4-d and PRW4-R maintained their activities in the presence of physiological salts and human serum. The fluorescence spectroscopy, flow cytometry, and electron microscopy observations indicated that the optimized sequences exhibited excellent antimicrobial potency by inducing cytoplasmic membrane potential loss, membrane permeabilization and disruption. Collectively, the results could be useful for designing short AMPs with great antimicrobial activity and cell selectivity.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (63)
CITATIONS (93)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....