High calcium transport by Polycystin-2 (TRPP2) induces channel clustering and oscillatory currents
POPC
DOI:
10.1016/j.bbrc.2023.03.067
Publication Date:
2023-04-03T05:51:11Z
AUTHORS (3)
ABSTRACT
The regulation by Ca2+ of Ca2+-permeable ion channels represents an important mechanism in the control of cell function. Polycystin-2 (PC2, TRPP2), a member of the TRP channel family (Transient Potential Receptor), is a Ca2+ permeable non-selective cation channel. Previous studies from our laboratory demonstrated that physiological concentrations of Ca2+ do not regulate in vitro translated PC2 (PC2iv) channel activity. However, the issue as to PC2's Ca2+ permeability and regulation remain ill-defined, in particular because Ca2+ transport is usually observed in the presence of other ionic gradients. In this study, we assessed Ca2+ transport by PC2iv in a lipid bilayer reconstitution system in a high Ca2+ gradient (CaCl2 100 mM cis, CaCl2 10 mM trans) in the presence of either 3:7 or 7:3 1-palmitoyl-2-oleoyl-choline and ethanolamine lipid mixtures. Reconstituted PC2iv showed spontaneous Ca2+ currents in both lipid mixtures, with a maximum conductance of 63 ± 13 pS (n = 19) and 105 pS ± 9.8 (n = 9), respectively. In both cases, we best fitted the experimental data with the Goldman-Hodgkin-Katz equation, observing a reversal potential (Vrev ∼ -27 mV) consistent with strict Ca2+ selectivity. The R742X mutated PC2 (PC2R742X), lacking the carboxy terminal domain of the channel showed no differences with wild type PC2. Interestingly, we also observed the onset of spontaneous Ca2+ current oscillations whenever PC2-containing samples were reconstituted in the 3:7, but not 7:3 POPC:POPE lipid mixture. The amplitude and frequency of the ionic oscillations were highly dependent on the applied voltage, the imposed Ca2+ gradient, and the presence of high Ca2+, which induced PC2 channel clustering as observed by atomic force microscopy (AFM). We also used the QuB suite to kinetically model the PC2 channel Ca2+ oscillations based on the presence of subconductance states in the channel. The encompassed evidence supports a high Ca2+ permeability by PC2, and a novel oscillatory mechanism dependent on the presence of Ca2+ and phospholipids that provides the first evidence for the relation between stochasticity and deterministic processes mediated by ion channels.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (32)
CITATIONS (2)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....