3D-printed versatile biliary stents with nanoengineered surface for anti-hyperplasia and antibiofilm formation
QH301-705.5
3D printing
02 engineering and technology
Article
Zinc ion implantation
Antibiofilm formation
Biodegradable biliary stent
Functionalized polymer
TA401-492
Anti-hyperplasia
Biology (General)
0210 nano-technology
Materials of engineering and construction. Mechanics of materials
DOI:
10.1016/j.bioactmat.2024.03.018
Publication Date:
2024-03-21T05:17:13Z
AUTHORS (17)
ABSTRACT
Biliary strictures are characterized by the narrowing of the bile duct lumen, usually caused by surgical biliary injury, cancer, inflammation, and scarring from gallstones. Endoscopic stent placement is a well-established method for the management of biliary strictures. However, maintaining optimal mechanical properties of stents and designing surfaces that can prevent stent-induced tissue hyperplasia and biofilm formation are challenges in the fabrication of biodegradable biliary stents (BBSs) for customized treatment. This study proposes a novel approach to fabricating functionalized polymer BBSs with nanoengineered surfaces using 3D printing. The 3D printed stents, fabricated from bioactive silica poly(ε-carprolactone) (PCL) via a sol-gel method, exhibited tunable mechanical properties suitable for supporting the bile duct while ensuring biocompatibility. Furthermore, a nanoengineered surface layer was successfully created on a sirolimus (SRL)-coated functionalized PCL (fPCL) stent using Zn ion sputtering-based plasma immersion ion implantation (S-PIII) treatment to enhance the performance of the stent. The nanoengineered surface of the SRL-coated fPCL stent effectively reduced bacterial responses and remarkably inhibited fibroblast proliferation and initial burst release of SRL in vitro systems. The physicochemical properties and biological behaviors, including in vitro biocompatibility and in vivo therapeutic efficacy in the rabbit bile duct, of the Zn-SRL@fPCL stent demonstrated its potential as a versatile platform for clinical applications in bile duct tissue engineering.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (133)
CITATIONS (8)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....