Highly efficient low-temperature biodegradation of polyethylene microplastics by using cold-active laccase cell-surface display system
Degradation
DOI:
10.1016/j.biortech.2023.129164
Publication Date:
2023-05-18T02:22:51Z
AUTHORS (6)
ABSTRACT
To eliminate efficiency restriction of polyethylene microplastics low-temperature biodegradation, a novel InaKN-mediated Escherichia coli surface display platform for cold-active degrading laccase PsLAC production was developed. Display efficiency of 88.0% for engineering bacteria BL21/pET-InaKN-PsLAC was verified via subcellular extraction and protease accessibility, exhibiting an activity load of 29.6 U/mg. Cell growth and membrane integrity revealed BL21/pET-InaKN-PsLAC maintained stable growth and intact membrane structure during the display process. The favorable applicability was confirmed, with 50.0% activity remaining in 4 days at 15 °C, and 39.0% activity recovery retention after 15 batches of activity substrate oxidation reactions. Moreover, BL21/pET-InaKN-PsLAC possessed high polyethylene low-temperature depolymerizing capacity. Bioremediation experiments proved that the degradation rate was 48.0% within 48 h at 15 °C, and reached 66.0% after 144 h. Collectively, cold-active PsLAC functional surface display technology and its significant contributions to polyethylene microplastics low-temperature degradation constitute an effective improvement strategy for biomanufacturing and microplastics cold remediation.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (50)
CITATIONS (21)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....