Bioelectrocatalytic reduction by integrating pyrite assisted manganese cobalt-doped carbon nanofiber anode and bacteria for sustainable antimony catalytic removal
Antimony
Manganese
Electricity
Bacteria
Bioelectric Energy Sources
Iron
Nanofibers
Cobalt
Sulfides
Electrodes
Carbon
Nitrosourea Compounds
DOI:
10.1016/j.biortech.2024.130378
Publication Date:
2024-01-26T20:44:24Z
AUTHORS (9)
ABSTRACT
A novel manganese cobalt metal-organic framework based carbon nanofiber electrode (MnCo/CNF) was prepared and used as microbial fuel cell (MFC) anode. Pyrite was introduced into the anode chamber (MnCoPy_MFC). Synergistic function between pyrite and MnCo/CNF facilitated the pollutants removal and energy generation in MnCoPy_MFC. MnCoPy_MFC showed the highest chemical oxygen demand removal efficiency (82 ± 1%) and the highest coulombic efficiency (35 ± 1%). MnCoPy_MFC achieved both efficient electricity generation (maximum voltage: 658 mV; maximum power density: 3.2 W/m3) and total antimony (Sb) removal efficiency (99%). The application of MnCo/CNF significantly enhanced the biocatalytic efficiency of MnCoPy_MFC, attributed to its large surface area and abundant porous structure that provided ample attachment sites for electroactive microorganisms. This study revealed the synergistic interaction between pyrite and MnCo/CNF anode, which provided a new strategy for the application of composite anode MFC in heavy metal removal and energy recovery.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (48)
CITATIONS (19)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....