Hollow SnO2/CdS QDs/CdCO3 heterostructured nanocubes coupled with hollow PtPd/MnCo–CeO2 nanozyme-mediated synergistic amplification for ultrasensitive PEC immunoanalysis of lung cancer biomarker
Immunoassay
Lung Neoplasms
Limit of Detection
Carcinoma, Non-Small-Cell Lung
Biomarkers, Tumor
Humans
Electrochemical Techniques
Biosensing Techniques
Lung
DOI:
10.1016/j.bios.2023.115398
Publication Date:
2023-05-15T17:06:52Z
AUTHORS (10)
ABSTRACT
Nowadays, lung cancer is one of the most dangerous cancers threatening human life all over the world. As a crucial biomarker, cytokeratin 19 fragment 21-1 (CYFRA 21-1) is extraordinary important for diagnosis of non-small cell lung cancer (NSCLC). In this work, we synthesized hollow SnO2/CdS QDs/CdCO3 heterostructured nanocubes with high and stable photocurrents, which applied to construction of a sandwich-typed photoelectrochemical (PEC) immunosensor for detection of CYFRA 21-1, integrated by in-situ catalytic precipitation strategy with home-built PtPd alloy anchored MnCo-CeO2 (PtPd/MnCo-CeO2) nanozyme for synergistic amplification. The interfacial electron transfer mechanism upon visible-light irradiation was investigated in details. Further, the PEC responses were seriously quenched by the specific immunoreaction and precipitation catalyzed by the PtPd/MnCo-CeO2 nanozyme. The established biosensor showed a wider linear range of 0.001-200 ng mL-1 and a lower limit of detection (LOD = 0.2 pg mL-1, S/N = 3), coupled by exploring such analysis even in diluted human serum sample. This work opens a constructive avenue to develop ultrasensitive PEC sensing platforms for detecting diverse cancer biomarkers in clinic.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (65)
CITATIONS (30)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....