Magnesium supplementation enhances mTOR signalling to facilitate myogenic differentiation and improve aged muscle performance
C2C12
DOI:
10.1016/j.bone.2021.115886
Publication Date:
2021-02-16T06:51:12Z
AUTHORS (10)
ABSTRACT
Magnesium (Mg2+), as an essential mineral, supports and sustains the health and activity of the organs of the human body. Despite some clinical evidence on the association of Mg2+ deficiency with muscle regeneration dysfunction and sarcopenia in older-aged individuals, there is no consensus on the action mode and molecular mechanism by which Mg2+ influences aged muscle size and function. Here, we identified the appropriate Mg2+ environment that promotes the myogenic differentiation and myotube hypertrophy in both C2C12 myoblast and primary aged muscle stem cell (MuSC). Through animal experiments, we demonstrated that Mg2+ supplementation in aged mice significantly promotes muscle regeneration and conserves muscle mass and strength. Mechanistically, Mg2+ stimulation activated the mammalian target of rapamycin (mTOR) signalling, inducing the myogenic differentiation and protein synthesis, which consequently offers protections against the age-related decline in muscle regenerative potential and muscle mass. These findings collectively provide a promising therapeutic strategy for MuSC dysfunction and sarcopenia through Mg2+ supplementation in the elderly.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (37)
CITATIONS (25)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....