Once daily calcium (1000 mg) and vitamin D (1000 IU) supplementation during military training prevents increases in biochemical markers of bone resorption but does not affect tibial microarchitecture in Army recruits
Adult
Male
0303 health sciences
Adolescent
Fractures, Stress
Tibia
Vitamins
3. Good health
Calcium, Dietary
Young Adult
03 medical and health sciences
Military Personnel
Bone Density
Dietary Supplements
Humans
Calcium
Female
Bone Resorption
Vitamin D
Biomarkers
DOI:
10.1016/j.bone.2021.116269
Publication Date:
2021-11-30T19:26:58Z
AUTHORS (7)
ABSTRACT
Basic combat training (BCT) is a period of novel physical training including load carriage resulting in higher risk of stress fracture compared to any other time during military service. Prior trials reported a 20% reduction in stress fracture incidence with Ca and vitamin D (Ca + D) supplementation (2000 mg Ca, 800 IU vitamin D), and greater increases in tibia vBMD during BCT compared to placebo. The primary objective of this randomized, double-blind, placebo-controlled trial was to determine the efficacy of a lower dose of Ca (1000 mg/d Ca, 1000 IU vit D) on PTH, bone biomarkers and tibial microarchitecture during BCT. One hundred volunteers (50 males, 50 females; mean age 21.8 ± 3.5 y) were block randomized by race and sex to receive a daily Ca + D fortified food bar or placebo. Anthropometrics, dietary intake, fasted blood draws and high resolution pQCT scans of the distal and mid-shaft tibia were obtained at the start of BCT and 8 wks later at the conclusion of training. As compliance was 98% in both treatment groups, an intent-to-treat analysis was used. At the distal tibia, total vBMD, Tb.vBMD, Tb.N, Th.Th and Tb.BV/TV increased (+1.07 to 2.12% for all, p < 0.05) and Tb.Sp decreased (0.96 to 1.09%, p < 0.05) in both treatment groups. At the mid-shaft, Ct.Pm increased (+0.18 to 0.21%, p = 0.01) and Ct.vBMD decreased (-0.48 to -0.77%, p < 0.001) in both groups. Ca + D prevented increases in CTX and TRAP, which were observed in the placebo group (group-by-time, p < 0.05). Mean circulating 25OHD, BAP, P1NP and iCa increased and PTH decreased in both treatment groups (p < 0.05). These results, in agreement with other studies, suggest that bone microarchitectural changes indicative of bone formation occur during BCT. While Ca + D supplementation at lower doses than those tested in previous studies prevented increases in biochemical markers of bone resorption in this study, there were no significant changes in bone tissue after 8 wks of Army BCT.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (36)
CITATIONS (14)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....