Alkali-cellulose/ Polyvinyl alcohol biofilms fabricated with essential clove oil as a novel scented antimicrobial packaging material
Atomic force microscopy
Clove oil
Alkaline cellulose
QD415-436
02 engineering and technology
Antimicrobial activity
0210 nano-technology
Biochemistry
Polyvinyl alcohol
Green packaging
DOI:
10.1016/j.carpta.2022.100273
Publication Date:
2022-12-07T01:41:31Z
AUTHORS (4)
ABSTRACT
The increased environmental awareness issues encouraged the manufacture of food -wares and packaging items from cellulosic materials to cope with the rapid growth of fast- food industry. In this work, scented biofilms with potent antimicrobial activity were prepared in a multi-step process assisted with the AFM. The biofilms comprised of polyvinyl alcohol (PVA) physically crosslinked with different weight ratios of alkaline cellulose (Na-Cell) [PVA/Na-Cell]. Then, the effect of gamma irradiation on the surface features of the optimized sample (PVA/Na-Cell4) was verified at 5–25 KGy. The optimum film (PVA/Na-Cell4.20kGy) was fabricated with different weight ratios of essential clove oil (ECO). The biofilms were characterized by the AFM, FT-IR, XRD, TGA, and the DMA. The contact angle measurements of the optimized films reveal wettability resistance as following: PVA/Na-Cell4.0kGy (102.48°) < PVA/Na-Cell4.20kGy (133.66°)< PVA/Na-Cell4.ECO20kGy (140.62°). The antimicrobial investigation displayed remarkable effect against different pathogens. Therefore, the claimed biofilms are excellent candidates for packaging application.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (46)
CITATIONS (10)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....