Ensemble Force Changes that Result from Human Cardiac Myosin Mutations and a Small-Molecule Effector
Adenosine Triphosphatases
Models, Molecular
0303 health sciences
Utrophin
QH301-705.5
Statistics as Topic
Models, Biological
Article
Actins
Biomechanical Phenomena
3. Good health
Small Molecule Libraries
Ventricular Myosins
Actin Cytoskeleton
Mice
03 medical and health sciences
Mutation
Animals
Humans
Urea
Cattle
Biology (General)
Cardiomyopathies
Software
DOI:
10.1016/j.celrep.2015.04.006
Publication Date:
2015-05-02T22:40:45Z
AUTHORS (5)
ABSTRACT
Cardiomyopathies due to mutations in human β-cardiac myosin are a significant cause of heart failure, sudden death, and arrhythmia. To understand the underlying molecular basis of changes in the contractile system's force production due to such mutations and search for potential drugs that restore force generation, an in vitro assay is necessary to evaluate cardiac myosin's ensemble force using purified proteins. Here, we characterize the ensemble force of human α- and β-cardiac myosin isoforms and those of β-cardiac myosins carrying left ventricular non-compaction (M531R) and dilated cardiomyopathy (S532P) mutations using a utrophin-based loaded in vitro motility assay and new filament-tracking software. Our results show that human α- and β-cardiac myosin, as well as the mutants, show opposite mechanical and enzymatic phenotypes with respect to each other. We also show that omecamtiv mecarbil, a previously discovered cardiac-specific myosin activator, increases β-cardiac myosin force generation.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (47)
CITATIONS (106)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....