New reaction path for long-chain hydrocarbons by electrochemical CO2 and CO reduction over Au/stainless steel
Overlayer
DOI:
10.1016/j.chemosphere.2023.139616
Publication Date:
2023-07-21T18:44:54Z
AUTHORS (7)
ABSTRACT
The Fischer-Tropsch (F-T) synthesis is recognized for its ability to produce long-chain hydrocarbons. In this study, we aimed to replicate F-T synthesis using electrochemical CO2 reduction and CO reduction reactions on a stainless steel (SS) support with a gold (Au) overlayer. Under CO2-saturated conditions, the presence of Au on the SS surface led to the formation of CH4 and a range of hydrocarbons (CnH2n and CnH2n+2, n = 2-7), while bare SS primarily produced hydrogen. The Au(10 nm)/SS exhibited the highest hydrocarbon production in CO2-saturated phosphate, indicating a synergistic effect at the Au-SS interface. In CO-saturated conditions, bare SS also produced long-chain hydrocarbons, but increasing Au thickness resulted in decreased production due to poor CO adsorption. Hydrocarbons were formed through both direct and indirect CO adsorption pathways. Anderson-Schulz-Flory analysis confirmed surface CO hydrogenation and C-C coupling polymerization following conventional F-T synthesis. The C2 hydrocarbons exhibited distinct behavior compared to C3-5 hydrocarbons, suggesting different reaction pathways. Despite low reduction product levels, our EC method successfully replicated F-T synthesis using the Au/SS electrode, providing valuable insights into C-C coupling mechanisms and electrochemical production of long-chain hydrocarbons. Depth-profiling X-ray photoelectron spectroscopy revealed significant changes in surface elemental compositions before and after EC reduction.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (87)
CITATIONS (8)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....