Natural variation in ZmGRF10 regulates tolerance to phosphate deficiency in maize by modulating phosphorus remobilization
Corn
S
Agriculture (General)
Phosphorus metabolism
GWAS
Agriculture
Phosphate utilization efficiency
S1-972
DOI:
10.1016/j.cj.2024.08.004
Publication Date:
2024-09-07T23:05:17Z
AUTHORS (13)
ABSTRACT
Phosphorus is a limiting factor in agriculture due to restricted availability in soil and low utilization efficiency of crops. The identification of superior haplotypes of key genes responsible for low-phosphate (Pi) tolerance and their natural variation is important for molecular breeding. In this study, we conducted genome-wide association studies on low-phosphate tolerance coefficients using 152 maize inbred lines, and identified a significant association between SNPs on chromosome 7 and a low-phosphate tolerance coefficient. ZmGRF10 was identified as a candidate gene involved in adaptation of maize to Pi starvation. Expression of ZmGRF10 is induced by Pi starvation. A mutation in ZmGRF10 alleviated Pi starvation stress. RNA-seq analyses revealed significant upregulation of genes encoding various phosphatases in the zmgrf10-1 mutant, suggesting that ZmGRF10 negatively regulates expression of these genes, thereby affecting low-Pi tolerance by suppressing phosphorus remobilization. A superior haplotype with variations in the promoter region exhibited lower transcription activity of ZmGRF10. Our study unveiled a novel gene contributing to tolerance to low-Pi availability with potential to benefit molecular breeding for high Pi utilization.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (54)
CITATIONS (4)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....