Active generalized predictive control of turbine tip clearance for aero-engines

Aircraft Mechanical Engineering 0211 other engineering and technologies Aero-engine Aerospace Engineering Robust perturbation radius 02 engineering and technology Global convergence 7. Clean energy Generalized predictive control (GPC) Turbine tip clearance Active clearance control (ACC)
DOI: 10.1016/j.cja.2013.07.005 Publication Date: 2013-07-31T21:30:18Z
ABSTRACT
AbstractActive control of turbine blade tip clearance continues to be a concern in design and control of gas turbines. Ever increasing demands for improved efficiency and higher operating temperatures require more stringent tolerances on turbine tip clearance. In this paper, a turbine tip clearance control apparatus and a model of turbine tip clearance are proposed; an implicit active generalized predictive control (GPC), with auto-regressive (AR) error modification and fuzzy adjustment on control horizon, is presented, as well as a quantitative analysis method of robust perturbation radius of the system. The active clearance control (ACC) of aero-engine turbine tip clearance is evaluated in a lapse-rate take-off transient, along with the comparative and quantitative analysis of the stability and robustness of the active tip clearance control system. The results show that the resultant active tip clearance control system with the improved GPC has favorable steady-state and dynamic performance and benefits of increased efficiency, reduced specific fuel consumption, and additional service life.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (20)
CITATIONS (35)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....