NRF2 activation induces NADH-reductive stress, providing a metabolic vulnerability in lung cancer

Kelch-Like ECH-Associated Protein 1 Lung Neoplasms NF-E2-Related Factor 2 NAD 3. Good health Oxidative Stress 03 medical and health sciences 0302 clinical medicine Carcinoma, Non-Small-Cell Lung Cell Line, Tumor Humans Signal Transduction
DOI: 10.1016/j.cmet.2023.01.012 Publication Date: 2023-02-24T15:49:49Z
ABSTRACT
Multiple cancers regulate oxidative stress by activating the transcription factor NRF2 through mutation of its negative regulator, KEAP1. NRF2 has been studied extensively in KEAP1-mutant cancers; however, the role of this pathway in cancers with wild-type KEAP1 remains poorly understood. To answer this question, we induced NRF2 via pharmacological inactivation of KEAP1 in a panel of 50+ non-small cell lung cancer cell lines. Unexpectedly, marked decreases in viability were observed in >13% of the cell lines-an effect that was rescued by NRF2 ablation. Genome-wide and targeted CRISPR screens revealed that NRF2 induces NADH-reductive stress, through the upregulation of the NAD+-consuming enzyme ALDH3A1. Leveraging these findings, we show that cells treated with KEAP1 inhibitors or those with endogenous KEAP1 mutations are selectively vulnerable to Complex I inhibition, which impairs NADH oxidation capacity and potentiates reductive stress. Thus, we identify reductive stress as a metabolic vulnerability in NRF2-activated lung cancers.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (111)
CITATIONS (74)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....