Dual-Sampling Attention Pooling for Graph Neural Networks on 3D Mesh
Pooling
Smoothing
DOI:
10.1016/j.cmpb.2021.106250
Publication Date:
2021-06-30T05:56:06Z
AUTHORS (5)
ABSTRACT
Mesh is an essential and effective data representation of a 3D shape. The 3D mesh segmentation is a fundamental task in computer vision and graphics. It has recently been realized through a multi-scale deep learning framework, whose sampling methods are of key significance. Rarely do the previous sampling methods consider the receptive field contour of vertex, leading to loss in scale consistency of the vertex feature. Meanwhile, uniform sampling can ensure the utmost uniformity of the vertex distribution of the sampled mesh. Consequently, to efficiently improve the scale consistency of vertex features, uniform sampling was first used in this study to construct a multi-scale mesh hierarchy. In order to address the issue on uniform sampling, namely, the smoothing effect, vertex clustering sampling was used because it can preserve the geometric structure, especially the edge information. With the merits of these two sampling methods combined, more and complete information on the 3D shape can be acquired. Moreover, we adopted the attention mechanism to better realize the cross-scale shape feature transfer. According to the attention mechanism, shape feature transfer between different scales can be realized by the construction of a novel graph structure. On this basis, we propose dual-sampling attention pooling for graph neural networks on 3D mesh. According to experiments on three datasets, the proposed methods are highly competitive.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (40)
CITATIONS (6)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....