A novel CFD-based computed index of microcirculatory resistance (IMR) derived from coronary angiography to assess coronary microcirculation

03 medical and health sciences 0302 clinical medicine Predictive Value of Tests Coronary Circulation Microcirculation Hydrodynamics Humans Vascular Resistance Coronary Angiography Coronary Vessels 3. Good health
DOI: 10.1016/j.cmpb.2022.106897 Publication Date: 2022-05-18T01:34:02Z
ABSTRACT
This study sought to present a novel approach for computation of the index of microcirculatory resistance (IMR) and to evaluate its diagnostic performance.IMR is a quantitative assessment to identify coronary microvascular dysfunction. However, its clinical use remains extremely limited. Calculation of IMR from coronary angiography images may increase the utility of coronary microvasculature assessment.203 patients with 203 vessels were included in this study. Physiology measurements were obtained with pressure-wire in the whole cohort. The computational fluid dynamics (CFD)-based AccuIMR was computed and evaluated in a blinded fashion using wire-based IMR as the reference standard.The overall diagnostic accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of AccuIMR for detecting coronary microvascular disease were 91.1% (95% CI: 86.4% to 94.7%), 89.4% (95% CI: 80.9% to 95.0%), 92.4% (95% CI: 86.0% to 96.5%), 89.4% (95% CI: 81.8% to 94.1%), and 92.2% (95% CI: 86.7% to 95.8%), respectively. The correlation coefficient equaled to 0.81 (p < 0.001) between AccuIMR and wire-based IMR with the receiver-operating curve had area under the curve of 0.924 (95% CI: 0.878 to 0.956).AccuIMR is a novel pressure-wire free approach to assess coronary microvascular disease with great diagnostic performance, which can be a valid, efficient, and cost-reducing tool to provide an easier routine assessment of coronary microcirculation.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (38)
CITATIONS (24)