Carbon nanotube-carbyne composite: A nanoreactor in a quasi-1D liquid state
02 engineering and technology
0210 nano-technology
DOI:
10.1016/j.commatsci.2018.03.020
Publication Date:
2018-03-27T18:54:51Z
AUTHORS (4)
ABSTRACT
Abstract It has recently been shown by Shi et al. that incredibly long carbyne chains up to 6000 atoms can be grown experimentally inside double walled carbon nanotube nanoreactors. The nanotubes stabilize these carbyne chains. Of course, carbon nanotubes themselves have remarkable properties including high temperature stability, and remarkable strength for weight. We have used reliable ab initio density functional theory molecular dynamics calculations to study the high temperature behavior and initial stages of melting of carbyne chains, carbon nanotubes, C60, and carbon nanotube-carbyne composites between 3000 and 5000 K. We find that the carbon nanotubes stabilize internal carbyne 1D chains and act as nanoreactors. Included molecular dynamics movies reveal carbyne chains in a quasi-1D liquid state inside the nanotube, a quasi-2D liquid state, and early melting.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (41)
CITATIONS (5)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....