Automated digital twin generation of manufacturing systems with complex material flows: graph model completion

Manufacturing Assembly Model generation Process mining Discrete event simulation Digital twin
DOI: 10.1016/j.compind.2023.103977 Publication Date: 2023-07-07T22:35:59Z
ABSTRACT
Industry 4.0 determined the emergence of technologies that enable data-driven production planning and control approaches. A digital model can be used to make decisions based on the current state of a manufacturing system, and its efficacy strictly depends on the capability to correctly represent the physical counterpart at any time. Automated model generation techniques such as process mining can significantly accelerate the development of digital twins for manufacturing systems. However, complex production environments are characterized by the convergence of different material and information flows. The corresponding data logs present multiple part identifiers, resulting in the wrong finding of the system structure with traditional process mining techniques. This paper describes the problem of discovering manufacturing systems with complex material flows, such as assembly lines. An algorithm is proposed for the proper digital model generation, aided by the new concept of object-centric process mining. The proposed approach has been applied successfully to two test cases and a real manufacturing system. The results show the applicability of the proposed technique to realistic settings.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (42)
CITATIONS (15)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....