Seawater desalination using the microbial electrolysis desalination and chemical-production cell with monovalent selective cation exchange membrane
01 natural sciences
6. Clean water
0105 earth and related environmental sciences
DOI:
10.1016/j.desal.2021.115394
Publication Date:
2021-10-27T02:59:58Z
AUTHORS (8)
ABSTRACT
Abstract The objective of this study was to investigate the feasibility of seawater desalination using the microbial electrolysis desalination and chemical-production cell (MEDCC) with monovalent selective cation exchange membrane (MSCEM) (MEDCC-MSCEM). With dissolved aquarium sea salts as artificial seawater, the maximum current density in the MEDCC-MSCEM reached 19.6 ± 0.3 A/m2, which was 43.1% higher than that in the MEDCC with cation exchange membrane (i.e., the traditional MEDCC as the control). The desalination efficiency within 24 h was 76 ± 7% in the MEDCC-MSCEM. The harvested acids (mainly HCl and H2SO4) and alkali (NaOH with 96% purity) concentrations reached 0.28 ± 0.02 and 0.26 ± 0.02 M, respectively. The total energy consumption within 24 h was much lower in the MEDCC-MSCEM than in the control (3.46 ± 0.41 vs. 4.99 ± 0.46 kWh/kg·TDS). The separation efficiency of Na+:Ca2+ and Na+:Mg2+ in the MSCEM was in the range of 42% - 72% and 53% - 87%, respectively. Effective limitation of Ca2+ and Mg2+ by MSCEM resulted in low precipitation of Ca (OH)2 and Mg(OH)2 in the membrane and cathode, which significantly improved the performance of MEDCC. The MEDCC-MSCEM has great potential in seawater desalination with resource recovery.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (42)
CITATIONS (27)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....