Identification methods for Hammerstein nonlinear systems

Identification Projection method
DOI: 10.1016/j.dsp.2010.06.006 Publication Date: 2010-07-12T00:36:30Z
ABSTRACT
This paper considers the identification problems of the Hammerstein nonlinear systems. A projection and a stochastic gradient (SG) identification algorithms are presented for the Hammerstein nonlinear systems by using the gradient search method. Since the projection algorithm is sensitive to noise and the SG algorithm has a slow convergence rate, a Newton recursive and a Newton iterative identification algorithms are derived by using the Newton method (Newton-Raphson method), in order to reduce the sensitivity of the projection algorithm to noise, and to improve convergence rates of the SG algorithm. Furthermore, the performances of these approaches are analyzed and compared using a numerical example, including the parameter estimation errors, the stationarity and convergence rates of parameter estimates and the computational efficiency.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (104)
CITATIONS (294)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....