Molecular Engineering and Theoretical Investigation of Novel Metal-Free Organic Chromophores for Dye-Sensitized Solar Cells

01 natural sciences 7. Clean energy 0104 chemical sciences
DOI: 10.1016/j.electacta.2015.07.079 Publication Date: 2015-07-21T15:49:37Z
ABSTRACT
Abstract In this work we report design and synthesis of three new metal free D-D–A–π–A type dyes (E1-3) with different acceptor/anchoring groups, as effective sensitizers for nanocrystalline titanium dioxide based dye sensitized solar cells. All the three dyes carry electron donating methoxy group as an auxiliary and indole as a principal donor, cyanovinylene as an auxiliary acceptor and thiophene as a π-spacer. Whereas, cyanoacetic acid, rhodanine-3-acetic acid and 4-aminobenzoic acid perform as acceptor/anchoring moieties, respectively in the dyes E1-3. Though the dye containing 4-aminobenzoic acid unit (E3) exhibits comparatively lower λmax, it shows the highest power conversion efficiency arising from the higher electron life time and good light-harvesting capability. The DFT studies reveal a better charge separation between the HOMO and LUMO levels of E3, further substantiating the experimental results. Among the three dyes, E3 shows the best photovoltaic performance with short-circuit current density (Jsc) of 9.35 mA cm−2, open-circuit voltage (Voc) of 620 mV and fill factor (FF) of 0.71, corresponding to an overall conversion efficiency of 4.12% under standard global AM 1.5G.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (39)
CITATIONS (42)