Molecularly imprinted polymer functionalized flower-like BiOBr microspheres for photoelectrochemical sensing of chloramphenicol

Molecularly imprinted polymer Molecular imprinting
DOI: 10.1016/j.electacta.2020.136161 Publication Date: 2020-04-05T02:33:39Z
ABSTRACT
Abstract In this study, an ultrasensitive photoelectrochemical (PEC) sensor showing a high selectivity to for chloramphenicol (CAP) was successfully constructed, based on the molecularly imprinted polymers (MIPs) functionalized photoelectrochemically active materials. The 3D flower-like BiOBr with large specific surface area was synthesized by a simple hydrothermal process and was employed as a matrix to graft the MIPs recognition element (denoted as MIPs-PEC). SEM, TEM, FTIR, XPS, XRD and UV–vis spectroscopy were used to investigate the microstructure characteristics of the as-obtained MIPs-PEC sensor. During the PEC sensing process, MIPs were prepared via a simple thermal polymerization process provided numerous recognition sites, which improved the sensor’s selectivity to CAP. The results showed that photocurrent response signal generated by photo-induced MIPs/BrOBr/ITO electrodes was proportional to the logarithm of CAP concentration over the range from 1.00 ⅹ 10−2 to 1.00 ⅹ 103 ng mL−1 with a low detection limit is 3.02 pg mL−1 (S/N = 3). MIPs-PEC sensor exhibited high selectivity and stability, low cost, and applicability to the determination of CAP in real samples.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (43)
CITATIONS (32)