Graphitic carbon nitride metal-free photocatalyst for the simultaneous removal of emerging pharmaceutical pollutants in wastewater

Pharmaceutical Preparations 13. Climate action Metals Environmental Pollutants Graphite Wastewater 6. Clean water Catalysis
DOI: 10.1016/j.envres.2023.116246 Publication Date: 2023-05-27T00:39:34Z
ABSTRACT
The presence of pharmaceutical pollutants in water has emerged as a significant public health concern due to their potential adverse impacts, including the development of antibiotic resistance. Consequently, advanced oxidation processes based on photocatalysis have garnered considerable attention for treating pharmaceutical contaminants in wastewater. In this study, graphitic carbon nitride (g-CN), a metal-free photocatalyst, was synthesized by the polymerization of melamine and assessed as a potential candidate for the photodegradation of acetaminophen (AP) and carbamazepine (CZ) in wastewater. Under alkaline conditions, g-CN demonstrated high removal efficiencies of 98.6% and 89.5% for AP and CZ, respectively. The relationships between degradation efficiency and catalyst dosage, initial pharmaceutical concentration, and photodegradation kinetics were investigated. Increasing the catalyst dose facilitated the removal of antibiotic contaminants, with an optimum catalyst dose of 0.1 g, achieving a photodegradation efficiency of 90.2% and 82.7% for AP and CZ, respectively. The synthesized photocatalyst removed over 98% of AP (1 mg/L) within 120 min, with a rate constant of 0.0321 min-1, 2.14 times faster than that of CZ. Quenching experiments revealed that g-CN was active under solar light and generated highly reactive oxidants such as hydroxyl (•OH) and superoxide (•O2-). The reuse test confirmed the good stability of g-CN for treating pharmaceuticals during three repeated cycles. Finally, the photodegradation mechanism and environmental impacts were discussed. This study presents a promising approach for treating and mitigating pharmaceutical contaminants in wastewater.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (38)
CITATIONS (31)