In-situ synthesis of magnetic iron-chitosan-derived biochar as an efficient persulfate activator for phenol degradation
Persulfate
DOI:
10.1016/j.envres.2023.116604
Publication Date:
2023-07-09T13:32:43Z
AUTHORS (8)
ABSTRACT
Persulfate activation is a forceful method for eliminating organic pollutants from coal chemical wastewater. In this study, an in-situ synthesis method was used to fabricate an iron-chitosan-derived biochar (Fe-CS@BC) nanocomposite catalyst using chitosan as a template. Fe was successfully imprinted into the newly synthesized catalyst. The Fe-CS@BC can activate persulfate to effectively degrade phenol. This point was confirmed by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The impact of various parameters on the removal rate was investigated in a single factor experiment. In Fe-CS@BC/PDS system, 95.96% of phenol (significantly higher than the original biochar of 34.33%) was removed within 45 min and 54.39% TOC within 2 h. The system showed superior efficiency over a broad pH value band from 3 to 9 and has a high degradation rate at ambient temperature. Free radical quenching experiment, EPR experiment and LSV experiment confirmed that multiple free radicals (including 1O2, SO4•-, O2•- and •OH) and electron transfer pathway combined to enhance phenol decomposition. Finally, the activation mechanism of persulfate by Fe-CS@BC was proposed to provide logical guidance on the treatment of organic pollutants in coal chemical wastewater.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (57)
CITATIONS (20)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....