Type-1 fuzzy forecasting functions with elastic net regularization
SELECTION
Social Sciences and Humanities
Social Sciences (SOC)
Sosyal Bilimler ve Beşeri Bilimler
Sinyal İşleme
Mühendislik
ENGINEERING
02 engineering and technology
Information Systems, Communication and Control Engineering
Bilgisayarla Görme ve Örüntü Tanıma
Yapay Zeka
Computer Science (miscellaneous)
0202 electrical engineering, electronic engineering, information engineering
Type-1 fuzzy functions
Bilgisayar Bilimi Uygulamaları
ENGINEERING, ELECTRICAL & ELECTRONIC
Computer Sciences
Elektrik ve Elektronik Mühendisliği
General Engineering
Computer Science Applications
Bilgisayar Bilimi (çeşitli)
RIDGE
Physical Sciences
Ekonomi ve İş
ECONOMICS & BUSINESS
Ekonometri
Engineering and Technology
Bilgisayar Bilimi
Sosyal Bilimler (SOC)
Computer Vision and Pattern Recognition
Bilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
OPERATIONS RESEARCH & MANAGEMENT SCIENCE
OPERASYON ARAŞTIRMA VE YÖNETİM BİLİMİ
Organizational Behavior and Human Resource Management
General Computer Science
Mühendislik (çeşitli)
Operational Research
TIME-SERIES
Yöneylem
Management Science and Operations Research
algorithms
BİLGİSAYAR BİLİMİ, YAPAY ZEKA
Genel Mühendislik
Artificial Intelligence
Örgütsel Davranış ve İnsan Kaynakları Yönetimi
REGRESSION
Sosyal ve Beşeri Bilimler
Bilgisayar Bilimleri
Econometrics
Social Sciences & Humanities
Electrical and Electronic Engineering
Engineering, Computing & Technology (ENG)
ANFIS
Genel Bilgisayar Bilimi
Engineering (miscellaneous)
Non-linear forecasting
Mühendislik, Bilişim ve Teknoloji (ENG)
COMPUTER SCIENCE
Elastic-net regularization
Yönetim Bilimi ve Yöneylem Araştırması
Fizik Bilimleri
Signal Processing
MÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
Mühendislik ve Teknoloji
Algoritmalar
Forecasting
DOI:
10.1016/j.eswa.2022.116916
Publication Date:
2022-03-21T18:02:19Z
AUTHORS (2)
ABSTRACT
Fuzzy functions have recently been used for forecasting problems. The main concepts behind a fuzzy functions are to cluster the inputs using a fuzzy clustering method and to include the obtained membership grades and their non-linear transformations as new variables in the input matrix. Then, multiple linear regression models are solved for different clusters. However, adding related variables to the input matrix leads to the multicollinearity problem. Thus, the main contribution of the proposed method is to employ an elastic net in fuzzy functions to overcome the aforementioned problem. Two regularization terms occur in an elastic net that come from the ridge and the lasso regression. These regularization terms are optimized using the nested cross-validation approach to overcome the multicollinearity problem in the fuzzy functions method. Twelve practical time-series datasets are analyzed to evaluate the performance of the proposed fuzzy functions. The outstanding performance of the proposed method has been verified in terms of root mean squared errors and mean absolute percentage errors for the selected datasets.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (48)
CITATIONS (8)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....