Type-1 fuzzy forecasting functions with elastic net regularization

SELECTION Social Sciences and Humanities Social Sciences (SOC) Sosyal Bilimler ve Beşeri Bilimler Sinyal İşleme Mühendislik ENGINEERING 02 engineering and technology Information Systems, Communication and Control Engineering Bilgisayarla Görme ve Örüntü Tanıma Yapay Zeka Computer Science (miscellaneous) 0202 electrical engineering, electronic engineering, information engineering Type-1 fuzzy functions Bilgisayar Bilimi Uygulamaları ENGINEERING, ELECTRICAL & ELECTRONIC Computer Sciences Elektrik ve Elektronik Mühendisliği General Engineering Computer Science Applications Bilgisayar Bilimi (çeşitli) RIDGE Physical Sciences Ekonomi ve İş ECONOMICS & BUSINESS Ekonometri Engineering and Technology Bilgisayar Bilimi Sosyal Bilimler (SOC) Computer Vision and Pattern Recognition Bilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE OPERATIONS RESEARCH & MANAGEMENT SCIENCE OPERASYON ARAŞTIRMA VE YÖNETİM BİLİMİ Organizational Behavior and Human Resource Management General Computer Science Mühendislik (çeşitli) Operational Research TIME-SERIES Yöneylem Management Science and Operations Research algorithms BİLGİSAYAR BİLİMİ, YAPAY ZEKA Genel Mühendislik Artificial Intelligence Örgütsel Davranış ve İnsan Kaynakları Yönetimi REGRESSION Sosyal ve Beşeri Bilimler Bilgisayar Bilimleri Econometrics Social Sciences & Humanities Electrical and Electronic Engineering Engineering, Computing & Technology (ENG) ANFIS Genel Bilgisayar Bilimi Engineering (miscellaneous) Non-linear forecasting Mühendislik, Bilişim ve Teknoloji (ENG) COMPUTER SCIENCE Elastic-net regularization Yönetim Bilimi ve Yöneylem Araştırması Fizik Bilimleri Signal Processing MÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK Mühendislik ve Teknoloji Algoritmalar Forecasting
DOI: 10.1016/j.eswa.2022.116916 Publication Date: 2022-03-21T18:02:19Z
ABSTRACT
Fuzzy functions have recently been used for forecasting problems. The main concepts behind a fuzzy functions are to cluster the inputs using a fuzzy clustering method and to include the obtained membership grades and their non-linear transformations as new variables in the input matrix. Then, multiple linear regression models are solved for different clusters. However, adding related variables to the input matrix leads to the multicollinearity problem. Thus, the main contribution of the proposed method is to employ an elastic net in fuzzy functions to overcome the aforementioned problem. Two regularization terms occur in an elastic net that come from the ridge and the lasso regression. These regularization terms are optimized using the nested cross-validation approach to overcome the multicollinearity problem in the fuzzy functions method. Twelve practical time-series datasets are analyzed to evaluate the performance of the proposed fuzzy functions. The outstanding performance of the proposed method has been verified in terms of root mean squared errors and mean absolute percentage errors for the selected datasets.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (48)
CITATIONS (8)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....