Binding of β-lactoglobulin to three phenolics improves the stability of phenolics studied by multispectral analysis and molecular modeling
0106 biological sciences
Nutrition. Foods and food supply
TP368-456
β-Lactoglobulin
01 natural sciences
Food processing and manufacture
Interaction mechanism
TX341-641
Phenolics
Advanced glycation end product
Muti-spectroscopy
Stability
Research Article
DOI:
10.1016/j.fochx.2022.100369
Publication Date:
2022-06-15T12:51:36Z
AUTHORS (8)
ABSTRACT
Phenolics have been used to suppress the formation of advanced glycation end products (AGEs) in food; however, enhancing their thermostability and photostability in foods remains a key issue. Ferulic acid (FA), quercetin (QT), and vanillic acid (VA), which reduce production of AGEs, were embedded in bovine β-lactoglobulin (β-LG) and their interaction mechanism was investigated. Fluorescence experiments demonstrated that FA and QT displayed typical static quenching, while VA caused fluorescence sensitization of β-LG. Furthermore, phenolics changed the secondary structure of β-LG by inducing the transformation from α-helices to β-structures, with Van der Waals forces and hydrogen bonds as the primary underlying forces. The thermal and photostability of FA/QT/VA was significantly improved upon binding to β-LG. Furthermore, QT, FA and VA demonstrated good AGEs inhibitory abilities in BSA-fructose, BSA-MGO, arginine-MGO models. These results reveal that β-LG embedding effectively improves the thermostability and photostability of dietary phenolics in food.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (45)
CITATIONS (17)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....