The Lassell massif—A silicic lunar volcano

13. Climate action 01 natural sciences 0105 earth and related environmental sciences
DOI: 10.1016/j.icarus.2015.12.036 Publication Date: 2015-12-30T18:00:16Z
ABSTRACT
Abstract Lunar surface volcanic processes are dominated by mare-producing basaltic extrusions. However, spectral anomalies, landform morphology, and granitic or rhyolitic components found in the Apollo sample suites indicate limited occurrences of non-mare, geochemically evolved (Si-enriched) volcanic deposits. Recent thermal infrared spectroscopy, high-resolution imagery, and topographic data from the Lunar Reconnaissance Orbiter (LRO) show that most of the historic “red spots” and other, less well-known locations on the Moon, are indeed silica rich (relative to basalt). Here we present a geologic investigation of the Lassell massif (14.65°S, 350.96°E) near the center of Alphonsus A basin in Mare Nubium, where high-silica thermal emission signals correspond with morphological indications of viscous (possibly also explosive) extrusion, and small-scale, low-reflectance deposits occur in a variety of stratigraphic relationships. Multiple layers with stair-step lobate forms suggest different eruption events or pulsing within a single eruption. Absolute model ages derived from crater size-frequency distributions (CSFDs) indicate that the northern parts of the massif were emplaced at ∼4 Ga, before the surrounding mare. However, CSFDs also indicate the possibility of more recent resurfacing events. The complex resurfacing history might be explained by either continuous resurfacing due to mass wasting and/or the emplacement of pyroclastics. Relatively low-reflectance deposits are visible at meter-scale resolutions (below detection limits for compositional analysis) at multiple locations across the massif, suggestive of pyroclastic activity, a quenched flow surface, or late-stage mafic materials. Compositional evidence from 7-band UV/VIS spectral data at the kilometer-scale and morphologic evidence for possible caldera collapse and/or explosive venting support the interpretation of a complex volcanic history for the Lassell massif.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (70)
CITATIONS (27)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....