Electrospun hydroxyapatite loaded L-polylactic acid aligned nanofibrous membrane patch for rotator cuff repair
Polylactic Acid
Electrospinning
DOI:
10.1016/j.ijbiomac.2022.07.061
Publication Date:
2022-07-12T01:32:23Z
AUTHORS (9)
ABSTRACT
Rotator cuff repair remains a challenge clinically due to the high retear rate after surgical intervention. There is a significant need to develop functional biomaterials facilitating tendon-to-bone integration. In this study, hydroxyapatite (HA) incorporated polylactic acid (PLLA) aligned nanofibrous membranes were fabricated by electrospinning as a low-cost sustainable rotator cuff patch. The morphology, physical, mechanical and in vitro cell assays of the nanofibrous membranes were characterized. The results showed that the nanofibrous membrane maintained a rough surface and weakened hydrophobicity. It has excellent cytocompatibility, and the cells were oriented along the direction of fiber arrangement. What's more, the PLLA-HA nanofibrous membrane could increase the alkaline phosphatase (ALP) expression in rat bone marrow mesenchymal stem cells (BMSCs), indicating that the electrospinning PLLA-HA nanofibrous membrane can better induce the bone formation of rat BMSCs cells. When the mass ratio of PLLA to HA exceeds 3: 1, with the increase of the HA content, the patch showed rising induction ability. The results suggested that electrospinning PLLA-HA nanofibrous membranes are an ideal patch for promoting tendon-bone healing and reducing the secondary tear rate. Furthermore, the use of biodegradable polymers and low-cost preparation methods presented the possibility for commercial production of these nanofibrous membranes.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (50)
CITATIONS (25)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....