Comparing hand gestures and a gamepad interface for locomotion in virtual environments

FOS: Computer and information sciences 05 social sciences Computer Science - Human-Computer Interaction 0202 electrical engineering, electronic engineering, information engineering 0501 psychology and cognitive sciences 02 engineering and technology Human-Computer Interaction (cs.HC)
DOI: 10.1016/j.ijhcs.2022.102868 Publication Date: 2022-06-02T02:00:25Z
ABSTRACT
Hand gesture is a new and promising interface for locomotion in virtual environments. While several previous studies have proposed different hand gestures for virtual locomotion, little is known about their differences in terms of performance and user preference in virtual locomotion tasks. In the present paper, we presented three different hand gesture interfaces and their algorithms for locomotion, which are called the Finger Distance gesture, the Finger Number gesture and the Finger Tapping gesture. These gestures were inspired by previous studies of gesture-based locomotion interfaces and are typical gestures that people are familiar with in their daily lives. Implementing these hand gesture interfaces in the present study enabled us to systematically compare the differences between these gestures. In addition, to compare the usability of these gestures to locomotion interfaces using gamepads, we also designed and implemented a gamepad interface based on the Xbox One controller. We conducted empirical studies to compare these four interfaces through two virtual locomotion tasks. A desktop setup was used instead of sharing a head-mounted display among participants due to the concern of the Covid-19 situation. Through these tasks, we assessed the performance and user preference of these interfaces on speed control and waypoints navigation. Results showed that user preference and performance of the Finger Distance gesture were close to that of the gamepad interface. The Finger Number gesture also had close performance and user preference to that of the Finger Distance gesture. Our study demonstrates that the Finger Distance gesture and the Finger Number gesture are very promising interfaces for virtual locomotion. We also discuss that the Finger Tapping gesture needs further improvements before it can be used for virtual walking.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (33)
CITATIONS (12)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....