Fabrication and electrochemical hydrogen storage performance of Ti49Zr26Ni25 alloy covered with Cd/Pd core/shell particles
Electrochemical kinetics
DOI:
10.1016/j.ijhydene.2019.07.094
Publication Date:
2019-08-16T22:01:19Z
AUTHORS (8)
ABSTRACT
Abstract A facile two-step reduction method is employed to obtain the Cd/Pd core/shell particles. Mechanical alloying and subsequent annealing are used to fabricate the Ti49Zr26Ni25 quasicrystal. Composite materials of Ti49Zr26Ni25 mixed with different contents of Cd/Pd particles are obtained via ball-milling. The electrochemical performance and kinetics properties of the alloy electrodes for Ni/MH secondary batteries are studied. Ultimately, a maximum discharge capacity of 272.9 mA h/g is achieved for 7% additive content of Cd/Pd. Ti49Zr26Ni25 + Cd/Pd shows higher capacity than Ti49Zr26Ni25 + Pd (246.8 mA h/g) and original Ti49Zr26Ni25 (212.5 mA h/g). Moreover, the composites also exhibit improved cyclic stability and high-rate dischargeability. The Cd/Pd particles with special core/shell microstructure can enhance the electro-catalytic activity of Pd. The Cd/Pd material covered on the surface of alloy can further decrease the charge-transfer resistance and accelerate the hydrogen transmission, thus improving the electrochemical properties and reaction kinetics of the electrode.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (45)
CITATIONS (22)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....