Experimental and numerical research on rotating detonation combustor under non-premixed conditions

02 engineering and technology 0204 chemical engineering
DOI: 10.1016/j.ijhydene.2020.02.009 Publication Date: 2020-02-25T00:05:11Z
ABSTRACT
Abstract In order to investigate the formation process and propagation characteristics of detonation wave, developing process of detonation wave from initiation to stable detonation formation under non-premixed conditions has been studied by experiments and numerical simulation. The results show that when mass flow rates of air and hydrogen are 158.957 g/s and 2.728 g/s respectively, stable detonation can be formed in the combustor. Due to the lower inlet pressure, there is an unstable stage in combustor before the stable detonation is formed. Reducing the air pressure will increase the lowest detonation limit of combustor and lead to flame-out and re-initiation in the combustor. The propagation direction of detonation wave may change after re-initiation. Non-premixed intake structure lead to the inconsistency of rotating detonation combustion fluid in the radial direction. Moreover, peak pressure appears near the outer wall, while peak temperature appears near the inner wall.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (44)
CITATIONS (32)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....