Visible light driven photosplitting of water using one dimensional Mg doped ZnO nanorod arrays
Nanorod
Wurtzite crystal structure
Photocurrent
Visible spectrum
DOI:
10.1016/j.ijhydene.2020.06.173
Publication Date:
2020-07-28T14:26:18Z
AUTHORS (4)
ABSTRACT
Abstract In the present work, we have introduced Mg doped ZnO nanorods based photoanodes for photoelectrochemical water splitting applications. Vertically aligned Mg doped ZnO nanorods were fabricated by sol-gel and hydrothermal technique. The as-prepared nanorod samples exhibited hexagonal wurtzite structure as confirmed from XRD measurements. We achieved a photocurrent density of 0.35 mA/cm2 at 1.5 V vs. Ag/AgCl for 10% Mg doped ZnO photoanode which is 9 times higher than that of undoped ZnO nanorods (0.03 mA/cm2). Incorporation of Mg resulted in faster charge transport and longer life time of electrons with reduced recombination rate. Mg dopant tuned the optical band gap of ZnO and increased the carrier concentration boosting the PEC performance of the photoanodes. Since seawater is one of the most abundant natural resource on earth, we further carried out seawater splitting of 10MgZ under visible light illumination which indicated its high photostability in natural seawater for 5 h of continuous illumination.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (52)
CITATIONS (31)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....