A dual ligand coordination strategy for synthesizing drum-like Co, N co-doped porous carbon electrocatalyst towards superior oxygen reduction and zinc-air batteries
Zeolitic imidazolate framework
Carbon fibers
DOI:
10.1016/j.ijhydene.2021.03.214
Publication Date:
2021-06-22T07:37:15Z
AUTHORS (9)
ABSTRACT
Abstract We herein propose a dual ligand coordination strategy for deriving puissant non-noble metal electrocatalysts to substitute valuable platinum (Pt)-based materials toward oxygen reduction reaction (ORR), a key reaction in metal-air batteries and fuel cells. In brief, cobalt ions are firstly double-coordinated with proportionate 2-methylimidazole (2-MeIm) and benzimidazole (BIm) to obtain drum-like zeolitic imidazolate frameworks (D-ZIFs), which are then carbonized to output the final Co, N co-doped porous carbon (Co–N–PCD) catalyst inheriting the drum-like morphology of D-ZIFs. The Co–N–PCD is featured by mesopores and exhibits superb electrocatalytic behavior for ORR. Impressively, the half-wave potential of Co–N–PCD catalysts is 0.886 V with finer methanol-tolerance and stability than those of commercial Pt/C. Additionally, a zinc-air battery assembled from the Co–N–PCD displays an open-circuit voltage of 1.413 V, comparable to that of commercial Pt/C (1.455 V), suggesting the potentials of Co–N–PCD in practical energy conversion devices.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (51)
CITATIONS (17)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....