SENTRI: Single-Particle Energy Transducer for Radionuclide Injections for Personalized Targeted Radionuclide Cancer Therapy
Male
Radioisotopes
Mice
Single Photon Emission Computed Tomography Computed Tomography
Humans
Animals
Prostatic Neoplasms
Radiopharmaceuticals
Lutetium
Prostate-Specific Antigen
DOI:
10.1016/j.ijrobp.2023.11.057
Publication Date:
2023-12-19T07:20:33Z
AUTHORS (7)
ABSTRACT
Targeted radionuclide therapy (TRT), whereby a tumor-targeted molecule is linked to a therapeutic beta- or alpha-emitting radioactive nuclide, is a promising treatment modality for patients with metastatic cancer, delivering radiation systemically. However, patients still progress due to suboptimal dosing, driven by the large patient-to-patient variability. Therefore, the ability to continuously monitor the real-time dose deposition in tumors and organs at risk provides an additional dimension of information during clinical trials that can enable insights into better strategies to personalize TRT.Here, we present a single beta-particle sensitive dosimeter consisting of a 0.27-mm3 monolithic silicon chiplet directly implanted into the tumor. To maximize the sensitivity and have enough detection area, minimum-size diodes (1 μm2) are arrayed in 64 × 64. Signal amplifiers, buffers, and on-chip memories are all integrated in the chip. For verification, PC3-PIP (prostate-specific membrane antigen [PSMA]+) and PC3-flu (PSMA-) cell lines are injected into the left and right flanks of the mice, respectively. The devices are inserted into each tumor and measure activities at 5 different time points (0-2 hours, 7-9 hours, 12-14 hours, 24-26 hours, and 48-50 hours) after 177Lu-PSMA-617 injections. Single-photon emission computed tomography/computed tomography scans are used to verify measured data.With a wide detection range from 0.013 to 8.95 MBq/mL, the system is capable of detecting high tumor uptake as well as low doses delivered to organs at risk in real time. The measurement data are highly proportional (R2 > 0.99) to the 177Lu-PSMA-617 activity. The in vivo measurement data agree well with the single-photon emission computed tomography/computed tomography results within acceptable errors (±1.5%ID/mL).Given the recent advances in clinical use of TRT in prostate cancer, the proposed system is verified in a prostate cancer mouse model using 177Lu-PSMA-617.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (25)
CITATIONS (1)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....