Cross-stream contrastive learning for self-supervised skeleton-based action recognition

Robustness Feature Learning RGB color model Benchmark (surveying) Feature (linguistics) Representation
DOI: 10.1016/j.imavis.2023.104689 Publication Date: 2023-04-29T01:13:52Z
ABSTRACT
15 pages, 7 figures<br/>Self-supervised skeleton-based action recognition enjoys a rapid growth along with the development of contrastive learning. The existing methods rely on imposing invariance to augmentations of 3D skeleton within a single data stream, which merely leverages the easy positive pairs and limits the ability to explore the complicated movement patterns. In this paper, we advocate that the defect of single-stream contrast and the lack of necessary feature transformation are responsible for easy positives, and therefore propose a Cross-Stream Contrastive Learning framework for skeleton-based action Representation learning (CSCLR). Specifically, the proposed CSCLR not only utilizes intra-stream contrast pairs, but introduces inter-stream contrast pairs as hard samples to formulate a better representation learning. Besides, to further exploit the potential of positive pairs and increase the robustness of self-supervised representation learning, we propose a Positive Feature Transformation (PFT) strategy which adopts feature-level manipulation to increase the variance of positive pairs. To validate the effectiveness of our method, we conduct extensive experiments on three benchmark datasets NTU-RGB+D 60, NTU-RGB+D 120 and PKU-MMD. Experimental results show that our proposed CSCLR exceeds the state-of-the-art methods on a diverse range of evaluation protocols.<br/>
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (59)
CITATIONS (10)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....