SIRT2 inhibition by AGK2 enhances mycobacteria-specific stem cell memory responses by modulating beta-catenin and glycolysis
Science
Immunology
Q
Bacteriology
Article
3. Good health
DOI:
10.1016/j.isci.2023.106644
Publication Date:
2023-04-10T15:54:01Z
AUTHORS (10)
ABSTRACT
Bacille Calmette-Guerin (BCG) generates limited long-lasting adaptive memory responses leading to short-lived protection against adult pulmonary tuberculosis (TB). Here, we show that host sirtuin 2 (SIRT2) inhibition by AGK2 significantly enhances the BCG vaccine efficacy during primary infection and TB recurrence through enhanced stem cell memory (TSCM) responses. SIRT2 inhibition modulated the proteome landscape of CD4+ T cells affecting pathways involved in cellular metabolism and T-cell differentiation. Precisely, AGK2 treatment enriched the IFNγ-producing TSCM cells by activating β-catenin and glycolysis. Furthermore, SIRT2 specifically targeted histone H3 and NF-κB p65 to induce proinflammatory responses. Finally, inhibition of the Wnt/β-catenin pathway abolished the protective effects of AGK2 treatment during BCG vaccination. Taken together, this study provides a direct link between BCG vaccination, epigenetics, and memory immune responses. We identify SIRT2 as a key regulator of memory T cells during BCG vaccination and project SIRT2 inhibitors as potential immunoprophylaxis against TB.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (60)
CITATIONS (10)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....