Disruption of the early-life microbiota alters Peyer’s patch development and germinal center formation in gastrointestinal-associated lymphoid tissue
Science
Developmental biology
Q
Microbiology
Article
3. Good health
DOI:
10.1016/j.isci.2023.106810
Publication Date:
2023-05-04T16:35:17Z
AUTHORS (15)
ABSTRACT
During postnatal development, both the maturing microbiome and the host immune system are susceptible to environmental perturbations such as antibiotic use. The impact of timing in which antibiotic exposure occurs was investigated by treating mice from days 5-9 with amoxicillin or azithromycin, two of the most commonly prescribed medications in children. Both early-life antibiotic regimens disrupted Peyer's patch development and immune cell abundance, with a sustained decrease in germinal center formation and diminished intestinal immunoglobulin A (IgA) production. These effects were less pronounced in adult mice. Through comparative analysis of microbial taxa, Bifidobacterium longum abundance was found to be associated with germinal center frequency. When re-introduced to antibiotic-exposed mice, B. longum partially rescued the immunological deficits. These findings suggest that early-life antibiotic use affects the development of intestinal IgA-producing B cell functions and that probiotic strains could be used to restore normal development after antibiotic exposure.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (73)
CITATIONS (10)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....